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smMARY

.

●

LINEARLY

The general dynsmic equation of creep bending of a beam loaded lat-
erally and axially was derived for a linearly viscoelastic material whose
mechanical properties can be characterized by four parameters. The mate-
rial can exhibit tistantaneous and ret~ded elasticity as well.as pure
flow.

The equation derived was used to obtain the creep bendhg deflection
of a beam in pure bending and of a column with initial sinusoidal devia-
tion from straightness. AE e~cted, the ratio of the creep deflections
of the besm in pme bending and the deflections of a corresponding purely
elastic structure is identical to the ratio of the creep strain and the
corresponding elastic strain of a bar under simple tension or compression.

The results of the analysis of the creep deflection of the column
showed that the deflections increase continuously with time and become
infinitely lsrge only when the loading time is correspondingly large.
However, lerge deflections are obtained in reasonably short periods of
time if the applied load is near to the Euler load of the column. The
deflection-time curves obtained from a numerical example are of the seine
type as those determined by experiment with aluminum columns.

INTRODW!TION

The problem of the determination of the behavior of beams and columns
under conditions conducive to creep deformation has been given attention
only in the past several years (see, for exsmple, refs. 1 to 8). ‘I!&Iis
problem is becoming increasingly inprtant because of the high tempera-
tures at which high-speed missiles and aircrsft as well as modern power
plants operate. It is the purpose of the present repcmt to investigate
analytically the nature of the creep deformation of besms formed from
materials which can be assured to exhibit linearly viscoelastic properties

.—

either at room or elevated temperatures.
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The fundamental behavior of ideal viscoelastic materials when sub-
~ected to various types of loading has been discussed rather fully In
the literature (see, for exsmple, refs. 2 and 9}. In this work the vis-

~

coelastic material is represented by a system of linearly elastic ele-
ments (such as Hookean springs) and linearly viscous elements (Newtonian
dashpots) connected in various series and parallel configurations (see
figs. l(a) and l(b)). An important class of problems which may be ana-
lyzed with the aid of models of the aforementioned type consists of those
involving the effect of viscoelastic creep on the response of beams and
columns to various types of loads. Freudenthal (refs. 1 and 2) has dis-
cussed such problems in which the structural material is considered to
be representedby a single Maxwell element consisting of a linesr spring
connected in series with a Mnear Whpotj hence the material properties
are definedby two parameters (fig. l(c)). However, it is shown in ref-
erence 9 that in order to approximate real materials, such aa smorphous
linear polymers, by a model consisting of springs and dashpots several
such elements must be incorporated in the model. Thus it is the purpose
of the present report to extend the app~cation of the concept of repre-
senting the mechanical properties of viscoelastic beams and columns by
networks of springs and dashpots to models characterizedby more than
two parameters. In particular, the general dynsmic equatian of motion
of a bent besm column is derived for a material represented by a Maxwell
element comected in series with a Kelvin or Voigt element where the
latter element consists of a spring and dashpot in parallel (fig. l(d)),
and hence the complete model involves four parameters (fig. 2). Such a 4

model is capable of exhibiting instantaneous and retarded elastic response,
as well as pure viscous flow. e“

The author Is indebtedto Professor N. J. Hoff for his guidance and
criticism, to Mr. S. A. Patel for his assistance in carrying out calcula-
tions, snd to the National Advisory Committee for Aeronautics for s~nsor-
ship of the research reported in this paper.
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constants

axially compressive end load

Ner load, YC?EII/L2

applied lateral load per
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principal axis of cross-sectional axea of beam or column

distance from ~-plane
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strain contributions

coefficients of viscosity

radius of curvature

stress, positive in tension

stresses

relaxation and retardation times, respectively

DERIVATIONOF D~ EQUATIONOFBENDING

Basic Theory

.

r

The mechanical behavior of viscoelastic materials, such as amorphous
linear polymers, under conditions of small stresses and strain, has been
discussed in great detail by Alfrey in reference 9. It is shown in this
reference that au analogy exists between the mechanical behavior of such
materials and the mechanical behavior of Hookean springs (linear elasticity)
and Newtonian dashpots (linear viscosity) connected in various series md
parallel networks (fig. 1). If two or more elements are coupled in series
producing a configuration such as the Maxwell model of figure l(c) each
of the elements must support the total load applied to the model, and
the total.extension Of the system is the sum of the individual extensions
of the elements involved. On the other hand, if elements are coupled in
parallel (such bei.ngthe case with the Kelvin orVoigt model of fig. l(d)),
the total load supported by the nmdel is equal to the sm of the loads
carried by the individual elements, whereas the total extension of the
model is equal to the extension of each of its components. The Maxwell
model is capable of exhibiting instantaneous elastic response and viscous
flow when subjected to arbitrary loading conditions. The former action
produces recoverable defomnation, whereas the latter action produces per-
manent deformation. The phenomenon of stress relaxation can be repre-
sented with the aid of such a MsxweU. model. The Voigt model represents
a retarded or time-dependent elastic response to applied loads and is
capable of exhibiting elastic aftereffects. Zt is shown in reference 9 ●

that the mechanical behavior of combinations of Voigt models in series,
such as that shown in figure l(a) where the firs-tand last elements may
be considered as degenerate Voigt elements, or of combinations of Maxwell 6

n

u
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elements in parallel (fig. l(b)) is analogous to the mechanical behavior
of amorphous linear polymers under conditions of small stresses and
stratis. ti order to determine the pertinent elasticity snd viscosity
coefficients to be used to complete the choice of a model representing

a gi= ~terf~~ stitabk creep or relaxation tests must be undertslcen.
The various coefficients are then determined empirically. Once these
coefficients are lmown as functions of temperature (and they will be func-
tions only of temperature if the material being represented is visco-
elastic and the model chosen is of sufficiently complete structure), then
the behavior under arbitrary conditions of loading and temperature of
any isotropic, homogeneous structural member formed from the viscoelastic
material can be described analytically. Although only those structural
members which can be considered to be unisxially stressed are considered
herein, a generalized three-dimensional theory exists and is described
in reference 9. However, the theory presented therein is valid only for
models characterized by two parameters.

In the ensuing analysis the behavior of viscoelastic beams and col-
umns is stdied by assuming that the material of construction cm be
represented adequately by a network consisting of a spring in series with
a VOigt element end a dashpot (see fig. 2). me model chosen CSJI be con-

sidered as representing a first approximation to a nmre general model
(see fig. l(a)) and is capable of exhibiting instantaneous and retsrded
elastic respanse as well as viscous flow. Any nmdel of simpler nature
than that chosen is in general incapable of responding to loads in a
manner analogous to known tiscoelastic materials. In the present study
the structures considered are assumed to be in a state of uniform con-
stent temperature and hence the elasticity and viscosity coefficients are
constants.

STRESS-STRAIN-TIME LAw

With the use of the principles governing the behavior of springs and
dashpots coupled in series or psrallel stated earlier, the genera stress-
strain-time relationship governing the behavior of the four-parsmeter model
of figure 2 can be determined. If at any time t the stress a is
applied to the model as shown in figure 2, where a is positive in ten-
sion, the strain contribution ek of the elastic element (la), having

an elastic modulus El, is given by Eooke’s law as

(1)

!Iherelation between the applied stress and corresponding strain in the
viscous element (lb) is given by Newton:s law of viscosity as
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in which Al is a coefficient of viscosity and the dot above the strain d

indicates differentiation with respect to time. Thus the combined strain
contribution El of elements (la) sm.d(lb) is related to the applied

stress as follows:

(3)

Equation (3) is the well-known stress-strain-timerelationship for a
Msxwell model.

The strain contribution ~2 of elements (2a) and (2b), respectively>

is related to the applied stresses rJ2a and U2b, where the sum Of these

stresses is the applied stress a, byexpressions similsx to equations (1)
and (2). Thus

(4)

(5)

in which E2 is the modulus of elasticity and ~ the coefficient of

viscosity of the elastic and viscous elements (2a) and (2b), respectively.

Hence the strain E2 is related to the applied stress by the

equation

Equation (6) is the defining

The total strain in the

equation of a Kelvin or Voigt model.

model of figure 2 is

(6)

(7)

e.

“

in which el and e2 are defined by equations (3) and (6), respectively.

Elimination of cl and E2 from equations (3), (6), and (7) le~s to
-—

the following stress-strain-the relation governing the mechanical behavior
of the four-parametermodel considered:

(8)

in which 71 = h@l, the relaxation the of amll element ~th e~s-

ticity and viscosity coefficients El and Al, respectively; T2 = A2/E2, &



NACA TN 3136 7

●

the retardation time of a Voigt element with elasticity and viscosity
coefficients E2 and %, respectively; and k = 1+ (T*/T4 + (%/%).

Equation (8) is thus the uniaxial stress-strain-time relationship
for a tiscoelastic material whose response to loading at a constant tem-
perature is analogous to the behavior of the model shown in figure 2.
The determination of the strain-time relation for a member under uniform
tensile or compressive stress is facilitated by the direct application
of the component equations (3) and (6) rather than the general equation (8).
Thus equations (3) and (6) together with equation (7) and the condition
that at t = O e is completely elastic end equal to El result in the

following strain-time relation (see ref. 9):

‘/6elastic (4 )(
=EE21-e

.t,.2) + (t~~) + 1
(8a)

which the elastic strain ~ehtic = a El. This relation is plotted
I

figure 3 for values of the elasticity and viscosity coefficients used
subsequent calculations.

Strain-Deflection Relation

Consider a beam loaded in a manner such that the bending moment
vector M acting on any cross section coincides with a principal cen-
troidal sxis such as the y-sxis in figure k. With the assumption that
cross sections of the undeformed beam remain plane and normal to the cen-
troidal sxis after bending, each element of the besm deforms under the
influence of the bending moment and an axial load as indicated in fig-
ure 5. In this figure x is the centroidal sxis of the besm; z is
the distance from the xy-plane to any other psrall.elp~e; e. and e

are the strains, shown positive in tension, at the xy-plane and at a
U.stance z from this plsne, respectively; and p is the radius of
curvature of the centroidal axis. Thus the strain corresponding
z is

( )e= l+Eo(z/p)+Eo

If the strains sre considered small, equation

e= (z/p) +Eo

Since the strain e is a linear function of
linear function of z (seeeq. (8)). Hence,

(9) becomes

to any

(9)

(lo)

z, the stress is also a
the stress distribution
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across a section can be decomposed into a uniform stress and a LLnearly
distributed stress which vanishes at the xy-plane. If @ constant sxial.ly
compressive load P is applied to the bean of cross-sectional area A,
the uniform stress (and hence the stress at z = O) id -P/A. Therefore,
Eo, which is caused by the constant stress -P/A, canle determined from

equation (&)j in Which ~e~stic is now taken as -P/AEl.

For small displacements w of the centroidal sxis

l/p = -w= (n)

where a subscript x denotes one differentiationwith respect to x.
Thus for small strain and displacements

E = -Zw= + Go

Differential Equation of Bending

(12)

of a Beam Column

With the aid of equations (8) and (10), the differential equation
of bending is readily derived. Multiplication of equation (8) by z dA
and integration of the resulting equation over the area A yield

(13)

The moment M is related to the stress by the relation

M=
J

a’ a (14)
A

Substitution of equations (10) and (14) into equation (13) together with

f
z2dA.I

A

smd

/’
zdA=o

‘A

.
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where I is the moment of inertia of the cross-sectional sxea A with
respect to the centroidal principal axis y (fig. 4), yields

Equation (15) is the general equation of bending of a beam of viscoelastic
material whose mechanical analog is the model shown In figure 2. For
small displacements the curvature l/p is defined by equation (U) and
hence equation (15) reduces ‘to

(ti)

The bending moment can be expressed as .

M= P(w+wi) +E(x,t) (17)

in which wi represents an initial deviation from straightness of the
original besm axis and K is the mment contribution due to applied
lateral and inertial loads. Substitution of M
equation (16) yields

-(P/TlT2)W, - i -
(v+ - (1/TlT4m

from equation-~17) into

(’P1T2)3 =

(18)

Furthermore, if m is the mass per unit length of the besm and P is
sm applied load per unit length of the beem, where m may vary with x
and p with x and t, then

Hence equation

[E
EII ““n +

.

E.. = -p+ti

(18) becomes

(19)

(20)

Equation (20) is the general dynamic equation of bending with small deflec-
. tion of a four-parezneterviscoelastic material. lf T2 is considered

infinitely large, that is, the Voigt element of figure 2 is frozen in,

& then equation (20) reduces to the dynsmic equation of bending of a beam
of Maxwell material (see ref. 10).
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INITIAL CONDITIONS d

Regardless of the exact nature of any particular besm problem, cer-
tain initial conditions which must be tiposed on all solutions of equa-
tion (20) are assumed in the present application of the viscoelastic

—

model of figure 2. These conditions sre that all external loads are
—

applied instantaneously and hence the initial response is purely elastic
(see ref. 9). Thus at t=o

and

(21)

‘lb =~2.0 (22)

Since e = ela + ~~b + G2, equations (21) and (22) weld only two independe-
nt relations. Differentiation of equation (7) with respect to t and
subsequent substitution of equations (3) and (6) into the resulting equa-
tion yield

‘2= (’a/El)’ + p “ ‘)/E~ -’26
(23)

*

Introduction of equation (1.2)into equation (23) resuLts in the following
relation for e2: .

—

(24)

Multiplication of equation (24) by z dA, integration over the area A,
and introduction of equation (14) into the relation obtained @eld for
62 =Oatt=O

(T4E4k+~ - ‘y$ ‘ ‘21’= =0—.
Hence equations (21) and (25) are initial conditions which must be imposed
on all solutions of equation (16) or (20).

APPLICATIONS OF D~ EQUATION OF BENDING

Bean Under Pure Bending

.

Equation (16) can be readily applied to the problem of creep due to
pure bending of a viscoelastic besm with inertial effects neglected. If
the applied constant bending moment is designated aa ~, then equation (16) ‘
becomes
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Integration of this equation twice
of the conditions that, at x = O

with respect to x
and L, W=*=O

(l&J2TlT2)(Lx - x2)

*

in which L is the length of the beam.

If w is written as

W = G(t )(~/2T~T2)(l/EII)(Ix - X2)

where G(t) is a function of time only, then equation

The general solution of equation (29) is

(/ )-tT2
G = Cle + T2(t + C2 - .2)

(26)

and introduction
yield

(27)

(28)

(27) reduces to

(a)

(m)

where Cl and C2 are constants of integration. Thus equation (28)
. becomes

)[ 1w=(~/2T@(@)(_-X2 ~,:(’p2) + T2(t + .2- T,) (31)

At t= 0, the initial deflections are purely elastic and hence

w = ‘elastic = (%/%1)(~ -

Alsoat t=O, ~2=Cl

yields

Application of equation
tion (31) result in the

and hence equation (25)

c1 = -(E@2)TlT2

(32) and substitution Of
following value for C2:

c2 = Tlk

X2 ) (32)

together with equation (31)

(33)

equation (33) into equa-

(34)
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Hence from eqyzations(31), (33)$ ~d (34)

[(w= (E@~)l.

In terms of the elastic

‘/welastic

e-t’’a)+(t,.l)+pq)(h-
displacement, equation (35) becomes

-t/T2

(/)(
.El E21-e

)(1)
+tTl+l

Equation (35) or (~) describes the pure-bending creep

NAC!ATN 3136

X2) (35)

(36)

behavior of
a viscoe”lasticbeam whose material has a mechanical behavior under stress
analogous to the behavior of the model of figure 2. Equation (%) is
plotted in figure 3 ud yields a creep curve identical to the creep curve
for the same material under simple tensile or compressive stresses (see
eq. (8a)).

Colmnn With Initial Curvature

The behavior of a viscoelastic column whose centroidal axis inltlally
deviates from a straight line can also be analyzed with the aid of equa- *

tion (20). With inertial.effects neglected equation (20) when applied
to the simply supported uni~orm column of length L indicated in fig-
ure 6 reduces to

+

(37)

If the initial deviation

where a is a constant,
additional deflection w

from

Wi

then
can

w=

straightness is taken as

= a sin(fix/L) (

the solution of equation (37) for the
be assumed in the form

aT(t) sin(tix/L) (39)

(38)

time only.where T(t) is a function of
and (39) into equation (37) the following
tion T:

Upon substitution of equations (38)
equation results for the func- .—

.
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[1i+(1/T2) E- w%)]

E - (’/q

(l/hTd(p/pE)/~- (p/p.] (M)

in which the Euler load PE = #EII/L2 . The general solution of equa-

tion (40) is

n~t *t
T=Ae + Be -1

in which A and B sre constants of integration and

‘J

np = -[+%)(.- ka)/(1- q - (@/2.2)(1- l+{. - OTy+
L

1/2

1?
a)[’/TlT4#P-

where a = P/~: Sjnce a must be less than unity in order for the

(41)

* (42)

column to be initially stable, nl is real and positive and n2 is

real snd negative.

Upon substitution of equation (41) tito equation (39), the deflec-
tion w becomes

(

nlt
w= Ae

The initial conditions which
eqs. (21) and (25))

n2t
+Be

must be

t 0,= w= Welasti~ =

t 0,= (’4V + [k

-)1 a sin(fix/L) (43)

imposed on equation (43) sre (see

~/(1- a]asi.n(fix/L) (44)

- l)/E1lM + T21;m = O (4’3)
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.

Since M = P(w + wi), equation (45) together with equation (43) @elds *r
att=O’

@k-l)/’~~,,l-a,}A+ {n2-

Similarly, equations (43) and (44) yield

A+B= 1/(1 -

Thus the constants A and B are

a) (47)

1 }/(
-a -n2nl - n2 )

1

(48)

II }/(
-a -nlnl- ‘2)

Hence the solution can be expressed in the following nondimensional.form:

nlt

(
W+wi

)/(‘elastic + wi) = A’e + 13’e%t

The ratio of the strain e at any distance z frcm the-xy.pke
(fig. 5) and the elastic strain at z = O, eoelastic, can now be deter.

mined from equzrtion(12) together with equations (8a), (38), (44), and (49).
Thus

/e ~oelastic

{

= -z(aA/I)(l/a) ~)(1 - ~ (A’~l’ +

*t
B’e

)1

( -w’2)+- 1 sin(ycx/L)+(E1/E2) 1

(52) “

in ~ch %elwtic = -p/~l=
●
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Equation (43) or (~) shows that for the column considered the deflec-
tions due to linearly viscous oreep increase with time and approach infinity
only as t approaches infinity for u = p~E< 1. Equation (49) is plott-

ed in figure 7 for various values of
/
p pE for a material whose elas-

ticity ad viscosity coefficients are given In the figure. The curves
show that for P/~ = 0.8 the deflections increase much more rapidly

with time than for the smaller values of P/’PE. For the same material

described in figure 7, equation (51) is plotted in figure 8 for x = L/2,
P/PE = 0.5, smd z(aA/1) = +0.1. The curves shti that on the compression

(concave) side of the beam the compressive strain increases monotonically
with time, while on the tension (convex) side the strain reaches a maxi-
mun value in compression, whereupon it decreases monotonically through
zero, finally becoming tensile.

It may be noted that equation (49) reduces to the corres~nding
solution for a column constructed of a Maxwell element if 72 is taken

infinitely large (see refs. 1 and 2).

4

The differential equation of bending of a besm or column was derived
for a viscoelastic material whose mechanical behavior is analogous to

“ that of the nmdel shown in figure 2. This model, whose properties are
defined by two elasticity =d two viscosity coefficients, is the simplest
model exhibiting instantaneous ad reterded elasticity as well as pure
flow. For materials whose properties sre defined by more general linearly
viscoelastic models (see fig. l(a)) corresponding differential equations
of bending can be derived in a manner similar to the derivation presented
earlier in the text.

The results of the analysis of the creep deflections of a visco-
elastic beam under pure bending are shown in figure 3. It is seen from
equations (8a) and (36) that the ratio of the deflections of the beam and
the deflections of the corresponding purely elastic structure at any
time is identical to the ratio of the total strain and the purely elastic
strain of a bar under uniaxial tensile or compressiw stresses. Consid-
eration of the linear nature of the stress-strain-time relation (eq. (8))
also leads to the conclusion that for any bent bar the stresses sre line-
arly distributed across the depth since the strains have been so assumed.
Hence for all cases of bending of a bsr by static lateral loads the
initial linear distribution of stresses across the depth of the beam
remains unchanged and can be determined by consideration of equilibrium
only, even though the deflections increase continuously with time.

.
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The analysis of the creep deflections of a simply supported column
with an initial sinusoidal deviation from straightness resulted in the
obsenations that the deflections tend to be infinitely large with time
and that for the applied load less than the Euler load the deflections
remain finite for ftiite time (see eq,.(49) and fig. 7). Because of the
linear nature of the general differential equation of bending (eq. (20))
these observations are applicable to column problems similar to the one
considered herein but with initial shapes other than the single sine
wave. In the case of columns, as with besms, the stresses me linesrly
distributed across the depth (see eqs. (8) and (12)). However, the
actual distribution changes continuously with time since the applied
moment which is proportional to the total deflection changes with time.

—

The vsriation of strain with time at the midspan of the column at
two points symmetrically located with respect to a plane nomal to the
principal plane of bending and containing the besm axis is shown in fig-
ure 8. The compressive strain on the compression side of the beam
increases monotonically with time; whereas the strati on the tension
side reaches a maximum vslue in compression, then decreases monotonically
through zero, finally becoming tensile.

The deflection-time curves shown in figure 7 indicate that the
deflections may Increase very rapidly with time for end loads nesr the
Euler load. It is interesting to note that the curves exhibit the pri-
mary and secondary creep characteristicsobserved in e~eriments with
aluminum cohmns reported in references 6 and 8.

.

Polytechnic Institute of Brooklyn,
Brooklyn, N. Y., April 18, 1952.

●
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(a) Voi@ elements
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.-— — --

(b) Maxwell elements in parallel.

l!q

(c) Maxwell
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Figure l.- Models used for study of
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Figure 2.- Four-parameter viscoelastic model.
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Figure 3.- Creep strain for uniform tension or compression and creep

deflections for pure bending. El = 5 X@pSi; E2= 13 X@pSi;

Al = ld lb-hr/sq in.; h2 = 13 x 107 lb-hr/sq in.; T1 = 2,000 hr;

T2 = 100hr.
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Figure ~.- Cross section of besm.

Figure 6.- Deflections of a simply
supported initially curved column.
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Figure 5.- Geometry of strains
in deformed beam.
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Figure 7.- Creep

column. El =

A2 = 13 x 107

i,HR

deflections of a simply supported initially curved

5 X ld pSi; E2 = 13 X ld psi; Al = ld lb-hr/sq in.;

lb-hr/sq in.
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8.-Creep strain at mtdspan of a simply supported initially curved
column. P/P~ = 0.5. (See fig. 7 for material properties.)
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